Chemical and spectral properties of carbon monoxide: methylene blue oxidoreductase. The molybdenum-containing iron-sulfur flavoprotein from Pseudomonas carboxydovorans.
نویسنده
چکیده
Carbon monoxide:methylene blue oxidoreductase, the key enzyme of CO-oxidation in energy metabolism of the carboxydobacterium Pseudomonas carboxydovorans, has been isolated in good yield and purity and found to contain FAD, molybdenum, iron, and labile sulfide in the ratio of 1:1:4:4. The enzyme is, therefore, a new molybdenum-containing iron-sulfur flavoprotein, exhibiting chemical and spectral properties quite similar to those of xanthine oxidase. Analytical data on the spectral characteristics of the enzyme in the oxidized and various reduced states are presented. Carbon monoxide:methylene blue oxidoreductase turned out to be photoreducible in the presence of EDTA and urea and was subject to reoxidation by air oxygen; no flavoprotein semiquinone was formed. Unphysiological electron acceptors, e.g. methylene blue, were used as oxidizing substrates whereas NAD or NADP turned out to be ineffective. Methylene blue reduction with CO was not affected by the presence of allopurinol, and carbon monoxide:methylene blue oxidoreductase was not able to catalyze the reduction of methylene blue with xanthine, adenine, or aldehydes. CO was the only reducing substrate used by the enzyme. Carbon monoxide:methylene blue oxidoreductase formed no sulfite adduct, and the reactivity with ferricyanide or cytochrome c was significant but slow. As known for other molybdenum hydroxylases, carbon monoxide:methylene blue oxidoreductase was rapidly inactivated by methanol, but the enzyme exhibited no ability to catalyze the oxidation of NADH with methylene blue, and NAD was not able to overcome methanol inhibition.
منابع مشابه
Purification and some properties of carbon monoxide dehydrogenase from Acinetobacter sp. strain JC1 DSM 3803.
A brown carbon monoxide dehydrogenase from CO-autotrophically grown cells of Acinetobacter sp. strain JC1, which is unstable outside the cells, was purified 80-fold in seven steps to better than 95% homogeneity, with a yield of 44% in the presence of the stabilizing agents iodoacetamide (1 mM) and ammonium sulfate (100 mM). The final specific activity was 474 mumol of acceptor reduced per min p...
متن کاملPlausible structure of the iron-molybdenum cofactor of nitrogenase.
A plausible structure of the iron-molybdenum cofactor of nitrogenase [reduced ferredoxin:dinitrogen oxidoreductase (ATP-hydrolyzing), EC 1.18.6.1] is presented based on altered substrate reduction properties of dinitrogenase containing homocitrate analogs within the cofactor. Alterations on each carbon of the four-carbon homocitrate backbone were correlated with altered substrate reduction prop...
متن کاملN2 fixation by Streptomyces thermoautotrophicus involves a molybdenum-dinitrogenase and a manganese-superoxide oxidoreductase that couple N2 reduction to the oxidation of superoxide produced from O2 by a molybdenum-CO dehydrogenase.
N2 fixation by Streptomyces thermoautotrophicus follows the equation N2 + 4-12MgATP + 8H+ + 8e- --> 2NH3 + H2 + 4-12MgADP + 4-12Pi and exhibits features which are not obvious in the diazotrophic bacteria studied so far. The reaction is coupled to the oxidation of carbon monoxide (CO) by a molybdenum-containing CO dehydrogenase that transfers the electrons derived from CO oxidation to O2, thereb...
متن کاملMagnetic composites based on metallic nickel and molybdenum carbide: a potential material for pollutants removal.
New magnetic composites based on metallic nickel and molybdenum carbide, Ni/Mo(2)C, have been produced via catalytic chemical vapor deposition from ethanol. Scanning electron microscopy, thermal analysis, Raman spectroscopy and X-ray diffraction studies suggest that the CVD process occurs in a single step. This process involves the reduction of NiMo oxides at different temperatures (700, 800 an...
متن کاملCloning and molecular characterization of the genes for carbon monoxide dehydrogenase and localization of molybdopterin, flavin adenine dinucleotide, and iron-sulfur centers in the enzyme of Hydrogenophaga pseudoflava.
Carbon monoxide dehydrogenases (CO-DH) are the enzymes responsible for the oxidation of CO to carbon dioxide in carboxydobacteria and consist of three nonidentical subunits containing molybdopterin flavin adenine dinucleotide (FAD), and two different iron-sulfur clusters (O. Meyer, K. Frunzke, D. Gadkari, S. Jacobitz, I. Hugendieck, and M. Kraut, FEMS Microbiol. Rev. 87:253-260, 1990). The thre...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 257 3 شماره
صفحات -
تاریخ انتشار 1982